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Abstract

Hydrogen energy may provide the means to an environmentally friendly future. One of the problems related to its application for trans-
portation is “on-board” storage. Hydrogen storage in solids has long been recognized as one of the most practical approaches for this purpose.
The H-capacity in interstitial hydrides of most metals and alloys is limited to below 2.5% by weight and this is unsatisfactory for on-board
transportation applications. Magnesium hydride is an exception with hydrogen capacity of∼8.2 wt.%, however, its operating temperature,
above 350◦C, is too high for practical use. Sodium alanate (NaAlH4) absorbs hydrogen up to 5.6 wt.% theoretically; however, its reaction
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inetics and partial reversibility do not completely meet the new target for transportation application. Recently Chen et al.[1] reported tha
Li3N + 2H2 ⇔ LiNH2 + 2LiH) provides a storage material with a possible high capacity, up to 11.5 wt.%, although this materia
oo stable to meet the operating pressure/temperature requirement. Here we report a new approach to destabilize lithium imid
artial substitution of lithium by magnesium in the (LiNH2 + LiH ⇔ Li2NH + H2) system with a minimal capacity loss. This Mg-substitu
aterial can reversibly absorb 5.2 wt.% hydrogen at pressure of 30 bar at 200◦C. This is a very promising material for on-board hyd
en storage applications. It is interesting to observe that the starting material (2LiNH2 + MgH2) converts to (Mg(NH2)2 + 2LiH) after a
esorption/re-absorption cycle.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Chen et al.[1] initially proposed lithium nitride/imide as a
ydrogen storage material due to its high hydrogen capacity,
p to 11.5 wt.%. The hydrogenation of lithium nitride is a

wo-step reaction as shown below:

i3N + H2 ⇔ Li2NH + LiH

i2NH + H2 ⇔ LiNH2 + LiH

i3N absorbs 5.7 wt.% of hydrogen for the first step and
1.5 wt.% for the two steps in total. Since the hydrogen pres-
ure for the reaction corresponding to the first step is very
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low, about 0.01 bar at 255◦C [1], only the second step, t
reaction of Li2NH (lithium imide) with H2, will be consid-
ered in the current study. Theoretically lithium imide
absorb 6.5 wt.% of hydrogen. According to Chen’s res
the plateau pressure for imide hydrogenation is 1 bar a
relatively high temperature of 285◦C; therefore, destabiliz
tion is needed before on-board application.

Following the paper by Chen et al.[1], a number o
papers were recently published on research on imid
hydrogen storage material. Chen et al.[2,3] further reported
the effect of substitution of various elements on the st
ity of Li imide/amide. It is interesting that Hu et al.[4–6]
reported kinetics study on Li imide/amide system and fo
that the reaction between NH3, released from Li amide, an
LiH is an ultra fast reaction. Ichikawa et al.[7,8] reported
sorption reversibility and kinetics of Li amide/imide syste
Nakamori et al.[9–12] reported the effect of Mg substit
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tion on stability of Li imide/amide systems by means of
thermal-gravimetric analysis; powder XRD, Raman and neu-
tron diffraction. Our previous paper[13] reported sorption
isotherms of a mixture of (2LiNH2 + 1.1MgH2), showing des-
orption hydrogen pressure of 30 bar at 200◦C with hydrogen
capacity of 4.5 wt.%.

In this study we report a successful approach to desta-
bilize lithium imide by partial substitution of lithium with
magnesium. A mixture of (2LiNH2 + MgH2) can be used
to reversibly absorb 5.2 wt.% of hydrogen with hydrogen
pressure of approximately 30 bar at 200◦C. This is a very
promising hydrogen storage system for on-board transporta-
tion application.

2. Experimental details

The initial materials, lithium amide (LiNH2) (purity 95%)
and magnesium hydride (MgH2) (purity 95%) were pur-
chased from Aldrich and used without pretreatment. The
fresh sample was a mixture of LiNH2 and MgH2 in a molar
ratio of 2:1. All sample handling was carried out in a glove
box under an argon atmosphere. Typically a 6 g mixture was
mechanically milled in a SPEX 8000 high-energy mill using
six WC milling balls, each weighing 9 g, under an argon atmo-
sphere for 2 h. After ball milling the sample was transferred
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Fig. 1. Pressure-composition isotherms at 220◦C for (2LiNH2 + MgH2).
Isotherms at 285◦C for (LiNH2 + LiH) are included for comparison. Open
symbols for desorption and filled symbols for absorption.

samples. In the following text, fresh sample means the sample
after ball milling, i.e. (2LiNH2 + MgH2).

3. Results

3.1. Absorption/desorption isotherms

After 3-sorption cycles at 220◦C the absorp-
tion/desorption isotherms for this sample were measured
at 220◦C and they are shown inFig. 1. The isotherms for
a sample of (LiNH2 + LiH) at 280◦C [13] were included
for comparison. It can be seen that Mg-substituted material
can deliver 41 bar of hydrogen at 220◦C. It can also be seen
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rom milling pot into sample holder in a glove box. Sam
reparation is described in detail elsewhere[13].

The sample holder with fresh sample was connected
ieverts’ system and gradually heated to 240◦C. The amoun
f hydrogen desorbed was measured by the Sieverts’
atus described elsewhere[13]. Hydrogen pressures we
easured by a Teledyne Taber model 206 piezoelectric t
ucer, 0–3000 psi, with a resolution of 10−2 MPa and a Bara

ron capacitance manometer, 0–3 bar. During sorption
ample temperature and applied pressure were monitore
ecorded by a Lab View-based software program.

The amount of hydrogen desorbed from the sample
alculated from the pressure changes in a calibrated vo
sing the ideal gas law.

High purity hydrogen (Matheson Trigas research pu
9.999%) was introduced into the sample container upo
ompletion of a desorption run. Hydrogen contents in
amples are reported as weight percents of the whole sa
eight.
Isotherm measurement was carried out after

bsorption/desorption cycles at 220◦C. In this study desorp
ion isotherms were measured at 200, 220 and 240◦C and an
bsorption isotherm was measured at 220◦C.

Powder X-ray diffraction (XRD) patterns were collec
n a SCINTAG (XDS 2000) powder diffractometer at s

ncrements of 0.02◦, measured during 0.5 s (λ = 1.5406Å).
he samples were protected from air and moisture by a
ylar sheet. Since the Mylar has three peaks in the 2θ range
f 21–28◦ they were here manually excluded from the XR
aw data file. Data was collected for fresh and re-abso
ig. 2. Van’t Hoff plots for (2LiNH2 + MgH2). Van’t Hoff plots for some
lassical metal hydrides and sodium aluminium hydrides are include
omparison. The red box indicates the ideal operating pressure an
erature range for on-board application. Dashed line is the extrapolat
an’t Hoff plot for (2LiNH2 + MgH2). For interpretation of the referenc

o colour in this figure legend, the reader is referred to the web versi
he article.
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that substitution of LiH in (LiNH2 + LiH) by (1/2 MgH2)
significantly destabilizes this system, which makes it a more
practical hydrogen storage system.

3.2. Van’t Hoff plot

Van’t Hoff plot for this material is shown inFig. 2 and
those for some classical metal hydrides and sodium alu-
minium hydrides[14] are included for comparison. The red
box in this plot indicates the ideal operating pressure and
temperature range for hydrogen storage on-board applica-
tion. This material (2LiNH2 + MgH2) may fall in the red box
range according to the extrapolated line (the dashed line in
Fig. 2) of the Van’t Hoff plot. Desorption enthalpy was cal-
culated from the Van’t Hoff plot for (2LiNH2 + MgH2) to be
approximately 39 kJ/mol-H2.

4. Discussion

In order to understand the reactions in hydrogen sorption
process for our new sample (2LiNH2 + MgH2) identifying
the re-absorbed species is very important for future research
on performance optimization. In this section we report the
results on identification of the re-hydrogenated sample by the
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Fig. 4. Powder XRD patterns for fresh (2LiNH2 + MgH2) and re-
hydrogenated samples.

mately half an hour, however, it lasted much longer for fresh
sample, more than 15 h, even though the desorption tempera-
ture was 240◦C, which is higher than for re-hydrided samples
(220◦C).

4.2. Comparison of powder XRD patterns of fresh and
re-hydrided samples

Fig. 4 shows powder XRD patterns of fresh and re-
hydrided samples. The fresh sample contains mainly LiNH2
and MgH2, while the re-hydrided sample contains mainly
LiH and Mg(NH2)2. This observation indicates that, upon
re-hydrogenation, the de-hydrogenated sample converts to
new compounds, Mg(NH2)2 and LiH. The following equa-
tion describes the reactions in the sorption process:

MgH2 + 2LiNH2 ⇒ Li2Mg(NH)2 + 2H2

⇔ Mg(NH2)2 + 2LiH

Here we propose that the fresh sample, i.e. (2LiNH2 +
MgH2), most likely transforms into a mixed ternary imide
during the first dehydrogenation process since neither Li2NH
nor MgNH, Mg3N2 were observed[13], however, more
work on determination of its structure is ongoing, here we
use Li2Mg(NH)2 only as a notation of the desorbed mate-
rial. A new material, Mg(NH2)2 + 2LiH, was formed upon
t , the
r
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he completion of re-hydrogenation process. Therefore
eversible sorption process is between (Li2Mg(NH)2 + 2H2)
nd (Mg(NH2)2 + 2LiH), as described in the above equati
he isotherms reported above, indeed, represent this re
nd (2LiNH2 + MgH2) is not included in the reversible pr
ess. In this paper, however, (2LiNH2 + MgH2) is used as
ymbol to denote the starting material we used.

. Conclusion

Half substitution of Li by Mg in (LiNH2 + LiH) can desta
ilize lithium imide/amide storage system significantly. T
g-substituted material in this study can absorb 5.2 wt.%
ydrogen reversibly and delivers hydrogen at approxim
0 bar at 200◦C. The isotherms for (2LiNH2 + MgH2) at
00, 220 and 240◦C, and Van’t Hoff plot as well, were ge
rated. The enthalpy of desorption for this material was c
comparison of desorption profiles and powder XRD patter
of fresh and re-hydrogenated samples.

4.1. Desorption profiles

Since the fresh sample (2LiNH2 + MgH2) was in its
hydrogenated-form, the 1st run was desorption. The sa
ple was then re-hydrided at 220◦C and the 2nd desorp-
tion followed. Desorption profiles and the sample tempe
atures for 1st (fresh sample, 2LiNH2 + MgH2) and 2nd (re-
hydrogenated) runs are shown inFig. 3.

It can be seen from this figure that at 220◦C the desorption
of the re-hydrogenated sample completed within appro

Fig. 3. Desorption profiles for (2LiNH2 + MgH2) for 1st and 2nd desorption
runs at indicated temperatures. Symbols are for hydrogen weight perce
lines are for desorption temperatures.
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lated to be 39 kJ/mol-H2 from Van’t Hoff plot. It is interesting
to observe that the mixture of (MgH2 + 2LiNH2) converts to
(Mg(NH2)2 + 2LiH) after a desorption/re-absorption cycle.
This is a very promising on-board hydrogen storage material
for transportation applications.
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